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Data

The dataset contains five quarterly Euro area macro time series: nominal money stock M3 (M), GDP
deflator, which is a measure for the price level (P ), real gross domestic product (Y ), nominal housing
wealth (WHH), and the annual rate on M3, an interest rate that is called the “own rate” of M3 (OR).
The order of integration is I(2) for M , P and WHH, and it is I(1) for Y and OR.

In the following sections, we will analyze these time series by setting up models to compute unknown
coefficients, discover potential cointegration relations, and investigate the impact of economical change.
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Part A

First, we transform the data of M , P , Y , and WHH by taking the natural logarithm. Next, we
generate two new variables: ‘Real money stock’ and ‘Growth rate of housing wealth’. We will denote
them by m− p and ∆whh, respectively.

Figure 1: Time series plots of the four I(1) processes

The most apparent feature of the four plots is the crash in the growth rate of housing wealth. This
extreme decline from the year 2007 to 2008 was most likely the result of the financial crisis that struck
the world around the same time.

Part B

We now turn to the estimation of a vector error correction model (V ECM) for the three-dimensional

system y =

m− p
y

OR

. Before testing for cointegration relations and estimating the unknown coeffi-

cients of our VECM, we check which lag order is best to use. In order to do this, we compute the
Akaike Information Criterion (AIC) for a V AR(p) model by testing up to two lags. Recall that the

formula for the AIC is given by AIC(p) = ln(det(Σ̂u

ML
))+ 2

T (pK
2+K), where K = 3 is the dimension

of our V AR(p) model and Σ̂u

ML
is the Maximum-Likelihood estimator of the covariance matrix Σu.
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We find values of −25.0 and −26.3 for the AIC(1) and AIC(2), respectively. We, therefore, choose
a lag order of p = 2 for the VAR model. Since a VECM has a lag order that is one less than its
corresponding VAR representation, we conclude that the best lag order to use for our VECM is p = 1.
The VECM without deterministic terms we set up is:

∆yt = αβ′yt−1 + Γ1∆yt−1 + ut (1)

The (K × r) matrices α and β are the loading and cointegration matrix, respectively. The (r × 1)
vector β′yt−1 contains all the r cointegration relations. We maximize the log-likelihood function in
order to find the estimates for α, β, Γ1 and Σu (see slides 26-27 of week 5 for explicit formulae). We
obtain the following estimates:

α̂ =

 0.01
0.01
−0.15

 β̂ =

−1.00
0.72
−0.06

 Γ̂1 =

 0.67 −0.18 0.01
−0.07 0.58 −0.01
−2.06 12.00 0.62

 Σ̂u =

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.01


Next, we perform a sequence of hypothesis tests to find the number of cointegration relations: H0 =
rk(Π) = r0 vs H1 = rk(Π) > r0, where r0 = 0 and increments by one each time we perform a new
test until r0 = K − 1. We use the vector of eigenvalues λ =

[
0.29775787 0.04893553 0.03946885

]′
to compute the test statistic (see slide 31 of week 5). The trace test results for cointegration are as
follows:

r trace p-valuetrace eigen p-valueeigen
0 39.953 < 0.001 31.813 < 0.001
1 8.140 0.228 4.516 0.553
2 3.624 0.066 3.624 0.068

Table 1: Johansen’s test results

The output provides two tests:

• Trace - tests the null hypothesis of rk(Π) = r against the alternative: r < rk(Π) ≤ K

• Eigenvalue - tests the null hypothesis of rk(Π) = r against the alternative: rk(Π) = r + 1

We are interested in the latter of these tests. Given a significance level of α = 1% for the cointegration
test decision, we can see that there is one cointegrating relationship (r = 1) present in the system, as
the null hypothesis of r = 0 cointegrating relationships is rejected at a 1% significance level, while the
null hypotheses of r = 1 and r = 2 are not rejected.

We will now interpret the obtained results. We know that the decomposition Π = αβ′ is not unique.
Hence, we must impose the restriction that the first r × r block of our K × r matrix β is equal to Ir.
In our case r = 1 and we can simply multiply both α̂ and β̂ by −1 to obtain the desired form. Then
β̂ =

[
1.000 −0.723 0.057

]′
and the estimated loading matrix α̂ has the estimated coefficients:

Variable Coefficient
m.minus.p -0.012 (0.003)

y -0.006 (0.003)
OR 0.148 (0.066)

Table 2: Loading matrix α

Using a 10% significance level, we can see that all the coefficients for the loading matrix are statistically
significant. The α-coefficients represent the speed at which the variables in the system adjust to
deviations from the long-run equilibrium. A negative coefficient indicates that deviations from the
equilibrium will lead to a decrease in the variable in the subsequent period, while a positive coefficient
suggests that deviations will lead to an increase in the variable. This is of course only the case if the
corresponding coefficient in the cointegration matrix β is positive. Otherwise, we will have a doubly
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negative effect and hence a positive effect. It is therefore important to look at the found cointegration
relation as well: β̂′yt−1 = RMSt−1−0.723∆RGDPt−1+0.057ORt−1. So a positive economic shock in
either the real money stock (RMS), growth of real GDP (∆GDP ) or annual rate on M3 will increase

β̂′yt−1 in the first and third case and decrease in the second case due to the coefficient of β̂. It is
therefore important to keep these effects in mind, as we will now consider the α-coefficients and their
effect on β̂′yt−1. For the real money stock (m− p variable), the α-coefficient is significantly negative
(-0.012) at a 10% significance level. This implies that deviations from the long-run equilibrium have
a notable but small negative impact on this variable in the short-run. For the growth of the real
GDP (y variable), the α-coefficient is also significantly negative (-0.006). This suggests that deviations
from the long-run equilibrium also have limited diminishing effect on the growth of real GDP in the
short-run. For the OR variable (the annual rate on M3), however, the α-coefficient is significantly
positive (-0.148). This means that if the annual rate on M3 deviates from its long-run equilibrium, it
will adjust in the same direction in the short-run. In other words, if the annual rate on M3 is higher
than its long-run equilibrium, it will increase in the following period, and vice versa. In summary,
our VECM results indicate that there is one cointegrating relationship in the system, namely that
β̂′yt−1 = RMSt−1 − 0.723∆RGDPt−1 + 0.057ORt−1. Furthermore, all variables are affected by
deviations from the long-run equilibrium in the short-run.

Part C

To extend the model by the growth rate of housing wealth (∆whh) and exclude all observations from

2007Q3 onward, we first need to adjust the dataset. This creates the system y =


m− p

y
OR

∆whh

. We will

then modify the VECM estimation function to include an overall (unrestricted) intercept and a linear
trend that is restricted to the cointegration relations. This leads to the following VECM: with

∆yt = αβo′yo
t−1 + Γ1∆yt−1 + ut (2)

In the equation above, yot−1 =

(
yt−1

1

)
. The term βo′ = (β′ : −β′µ0) includes the cointegration matrix

and the constant. This incorporates the constant term in the matrix ∆xt, a trend in matrix yt−1. The
variables and the procedure of estimation of the VECM are the same as described in the section under
Equation 1 in part B. We obtain the following results:

α̂ =


0.5088
0.0033
0.0015
−0.0297
−0.00003

 β̂o′ =


0.0483
0.0958
−0.0021
−1.00
−0.001

 Γ̂1 =


−0.0137 −0.0713 −0.0008 0.0722
0.5604 −0.0336 0.0075 1.5527
−0.0151 0.4284 −0.003 1.3582
1.3236 7.1148 0.7577 −5.9816
−0.001 0.0075 −0.0002 0.0713



Σ̂u =


0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.01 0.0001 0.0000
0.0000 0.0000 0.0001 0.0085 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000


The ∆whh (the last row of each of the estimates) coefficients represent the short-run dynamics of
the VECM model. The coefficients in the alpha matrix show the speed of adjustment to the long-
run equilibrium, while the coefficients in the Γ1 matrix show the short-run impact of each variable
on other variables in the system. We examine the eigenvalues and the Johansen test results to see
if there’s evidence for cointegration between the variables in the system. The eigenvalues are λ =[
0.563 0.459 0.207 0.091 0.00

]′. The Johansen test results show the maximal eigenvalue statistic
(λmax) with a linear trend in cointegration. The eigenvalues are sorted in descending order, and their
magnitudes indicate the strength of the cointegration relationships. The null hypothesis is that there
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are at most r cointegrating relationships. Below is the table of test statistics and critical values of the
test:

Critical value
Null hypothesis Test statistic 10% 5% 1%

r = 0 57.10 29.12 31.46 36.65
r ≤ 1 42.34 23.11 25.54 30.34
r ≤ 2 16.02 16.85 18.96 23.65

Table 3: Johansen’s test results for VECM with linear trend and intercept

We start with the null hypothesis r = 0 and compare the test statistic (57.10) to the critical values
at different significance levels (10%, 5%, and 1%). Since the test statistic is greater than the critical
values, we reject the null hypothesis. Next, we test the null hypothesis r ≤ 1. The test statistic
(42.34) is again greater than the critical values, so we reject the null hypothesis. When we test the null
hypothesis r ≤ 2, the test statistic (16.02) is smaller than the critical values for all three significance
levels, which indicates that we fail to reject the null hypothesis at a 5% (even at 1%) significance level.
Based on the Johansen test results, we thus find evidence for two cointegrating relationships at a
5% significance level. This suggests that there are two long-run equilibrium relationships among the
variables in the model. Since we only found evidence for one cointegration relation in the previous
VECM, extending the model by the growth rate of housing wealth could imply that this economic
factor also plays an essential role in the system.

Part D

To investigate the impact of the financial crisis on the stability of the model coefficients, we should
re-estimate the VECM model using all available observations in the dataset, including those after
the financial crisis. After re-estimating the VECM model using all available observations, i.e. for

the system y =


m− p

y
OR

∆whh

, we examine the summary output to evaluate the stability of the model

coefficients. We compare the estimated coefficients and their statistical significance to those obtained
in our previous model. If the coefficients and their significance levels have changed considerably, this
could suggest that the financial crisis has had an impact on the stability of the model coefficients. If
the coefficients remain relatively stable and maintain their significance levels, it could indicate that
the model is robust and stable even when including the financial crisis period in the analysis. Here are
the coefficients:

α̂ =


0.8613
−0.0001
0.0033
−0.0318
−0.0009

 β̂ =


−1.00
0.01

0.0001
0.0685
−0.0004

 Γ̂1 =


0.4212 −0.1001 −0.0013 0.0178
−0.0508 −0.0038 −0.0007 0.0089
1.7958 0.6530 0.0073 −0.0941
42.5088 −1.8647 0.6678 9.2828
1.7285 −0.0153 −0.0068 0.6590



Σ̂u =


0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.0001 0.0111 0.0002
0.00 0.00 0.00 0.00 0.0002 0.00


The eigenvalues are λ =

[
1.00 0.266 0.165 0.118 0.097

]′
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Critical value
Null hypothesis Test statistic 10% 5% 1%

r = 0 31.74 29.12 31.46 36.65
r ≤ 1 16.45 23.11 25.54 30.34

Table 4: Johansen’s test results for VECM with linear trend and intercept (all data)

Similar as to what was done in part C, we perform the Johansen test on the system based off the table
of test statistics above. For null hypothesis r = 0, the test statistic (31.74) is greater than the critical
values at a 10% and 5% significance level, but is less than the critical value at a 1% significance level.
Therefore, we reject the null hypothesis if we have a 5% or 10% significance level, and fail to reject it
if we have a 1% significance level. For null hypothesis r ≤ 1, we have that the test statistic (16.45) is
less than all the critical values at the 10%, 5%, and 1% significance levels. We will fail to reject the
null hypothesis for all significance levels. The Johansen test result therefore tells us that there is one
cointegrating relationship if we use a 5% significance level.

We can observe from the code that the eigenvectors and their corresponding cointegration relationships
appear to be relatively stable, with minor changes compared to the previous model. The adjustment
coefficients in the alpha matrix show some variations, but overall, they are still relatively stable. The
phi matrix, which represents the short-run dynamics, has also experienced some changes, but the coef-
ficients remain in a reasonable range. The omega matrix, representing the variance-covariance matrix
of the residuals, has also undergone some changes but still maintains a similar structure to the previous
model.

In conclusion, based on the re-estimated VECM model using all available observations, the stability
of the model coefficients has been affected to some extent by the financial crisis. However, the model’s
overall structure remains relatively stable, and the Johansen procedure indicates the presence of one
cointegrating relationship among the variables. This suggests that the VECM model is still robust
enough to analyze the long-run relationships between the variables, even when including the financial
crisis period in the analysis.

Appendix

Reading in data

rm(list=ls())

library(readr)

data <- read.csv("data_assignment2.csv", dec=",", sep=";")

Code for part A

data.log <- log(data[,2:5])

colnames(data.log) <- c("m","y","whh","p")

data.log$m.minus.p <- (data.log$m - data.log$p)

data.log$delta.whh[1] <- 0

for(i in 2:(nrow(data.log))){

data.log$delta.whh[i] <- (data.log$whh[i] - data.log$whh[i-1]) / data.log$whh[i-1]

}

m.minus.p.data <- data.log[5]

y.data <- data.log[2]

delta.whh.data <- data.log[6]

or.data <- data[6]

plot(ts(m.minus.p.data, frequency = 4, start=c(1990,2)), main="Quarterly Euro Area Real Money Stock", ylab = "Real Money Stock")

plot(ts(y.data, frequency = 4, start=c(1990,2)), main="Quarterly Euro Area Real GDP (Normalized)", ylab = "ln(Real GDP)")

plot(ts(delta.whh.data, frequency = 4, start=c(1990,2)), main="Quarterly Euro Area Growth Rate of Housing Wealth", ylab = "Growth Rate of Housing Wealth")
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plot(ts(or.data, frequency = 4, start=c(1990,2)), main="Quarterly Euro Area Own Rate of Nominal Money Stock", ylab = "Own Rate of Nominal Money Stock")

Code for part B

library(vars)

library(geigen)

data$delta.whh <- data.log$delta.whh

data$m.minus.p <- (data.log$m - data.log$p)

data$y <- data.log$y

vecm.data <- data[c(7,8,6)]

ts.vecm.data <- ts(vecm.data, frequency=4,start=c(1990,1))

VARselect(ts.vecm.data, lag.max = 2)

p <- 1

r <- 1

build_dX <- function(dataset, p){

return(dataset[(p+2):nrow(dataset),] - dataset[(p+1):(nrow(dataset)-1),])

}

build_Xlag <- function(dataset, p){

return(dataset[(p+1):(nrow(dataset)-p),])

}

build_W <- function(dataset, p){

dX_full <- t(dataset[2:(nrow(dataset)-1),] - dataset[1:(nrow(dataset)-2),])

W <- matrix(c(dX_full[, p:1]), 1)

for (t in (p+1):ncol(dX_full)){

W <- rbind(W, matrix(c(dX_full[,(t-p+1):t]), 1))

}

return(W)

}

build_Mw <- function(W){

Mw <- (W %*% solve(t(W) %*% W) %*% t(W))

return(diag(1, nrow(Mw)) - Mw)

}

build_S00 <- function(Mw, dX){

return((t(dX) %*% Mw %*% dX) / nrow(dX))

}

build_S11 <- function(Mw, Xlag){

return((t(Xlag) %*% Mw %*% Xlag) / nrow(Xlag))

}

build_S01 <- function(Mw, Xlag, dX){

return((t(dX) %*% Mw %*% Xlag) / nrow(Xlag))

}

est_alpha <- function(beta, S01, S11){

return(S01 %*% beta %*% solve(t(beta) %*% S11 %*% beta))

}

est_phi <- function(beta, dX, Xlag, W, alpha){

return(t(dX - (Xlag %*% beta %*% t(alpha))) %*% W %*% solve(t(W) %*% W))

}
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est_omega <- function(beta, S00, S01, S11){

S00 - (S01 %*% beta %*% solve(t(beta) %*% S11 %*% beta) %*% t(beta) %*% t(S01))

}

est_beta <- function(S11, S00, S01, r){

A <- (t(S01) %*% solve(S00)) %*% (S01)

B <- S11

eigenvalues <- geigen(A, B, symmetric=FALSE)

beta <- eigenvalues$vectors[,order(-eigenvalues$values)]

beta <- matrix(beta[, 1:r], ncol=r)

lambdas <- eigenvalues$values[order(-eigenvalues$values)]

return(list(beta, lambdas))

}

est_VECM <- function(dataset, p=1, r=1){

dX <- build_dX(dataset, p)

Xlag <- build_Xlag(dataset, p)

W <- build_W(dataset, p)

Mw <- build_Mw(W)

S00 <- build_S00(Mw, dX)

S11 <- build_S11(Mw, Xlag)

S01 <- build_S01(Mw, Xlag, dX)

eigenvalues_results <- est_beta(S11, S00, S01, r=r)

beta <- eigenvalues_results[[1]]

lambdas <- eigenvalues_results[[2]]

alpha <- est_alpha(beta, S01, S11)

phi <- est_phi(beta, dX, Xlag, W, alpha)

omega <- est_omega(beta, S00, S01, S11)

return(list(beta=beta, alpha=alpha, phi=phi, omega=omega,

lambdas=lambdas, S00=S00, S11=S11))

}

VECM_results <- est_VECM(ts.vecm.data, p, r)

VECM_results

LRstat <- function(lambdas, n=nrow(ts.vecm.data - 2)){

-n*sum(log(1 - lambdas))

}

lambdas <- est_VECM(ts.vecm.data, p, r)$lambdas

LRstat(lambdas)

summary(rank.test(VECM(ts.vecm.data,lag=1,r=1,include=’none’,estim=’ML’,LRinclude=’none’),cval=0.01))

Code for part C

# Find the index corresponding to 2007Q2

index_2007Q2 <- which(data$X == "2007-4")

# Create the restricted dataset

data_restricted <- data[1:(index_2007Q2 - 1), ]

data_restricted$log_delta_whh <- data.log$delta.whh[1:nrow(data_restricted)]

vecm_data_restricted <- data_restricted[c("m.minus.p", "y", "OR", "log_delta_whh")]

# Convert the dataset to a time series object

ts_vecm_data_restricted <- ts(vecm_data_restricted, frequency = 4, start = c(1990, 1))

est_VECM_trend <- function(dataset, p = 1, r = 1) {
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dX <- build_dX(dataset, p)

Xlag <- build_Xlag(dataset, p)

W <- build_W(dataset, p)

# Add constant term to dX

dX_with_const <- cbind(1, dX)

# Add linear trend to Xlag

trend <- 1:nrow(Xlag)

Xlag_with_trend <- cbind(Xlag, trend)

Mw <- build_Mw(W)

S00 <- build_S00(Mw, dX_with_const)

S11 <- build_S11(Mw, Xlag_with_trend)

S01 <- build_S01(Mw, Xlag_with_trend, dX_with_const)

eigenvalues_results <- est_beta(S11, S00, S01, r = r)

beta <- eigenvalues_results[[1]]

lambdas <- eigenvalues_results[[2]]

alpha <- est_alpha(beta, S01, S11)

phi <- est_phi(beta, dX_with_const, Xlag_with_trend, W, alpha)

omega <- est_omega(beta, S00, S01, S11)

return(

list(

beta = beta,

alpha = alpha,

phi = phi,

omega = omega,

lambdas = lambdas,

S00 = S00,

S11 = S11

)

)

}

# Estimate VECM with the modified function

VECM_trend_results <- est_VECM_trend(ts_vecm_data_restricted, p, r)

# Run the VECM using the vars package

restricted_vecm <- ca.jo(

ts_vecm_data_restricted,

type = "eigen",

ecdet = "trend",

K = 2, # Set the lag order to 2

spec = "transitory"

)

summary(restricted_vecm)

Code for part D

# Convert the full dataset to a time series object

vecm.data.partd <- ts(data[c(7,8,6,9)], frequency = 4, start = c(1990,1))

# Estimate VECM with the modified function

VECM_trend_results_full <- est_VECM_trend(vecm.data.partd, p, r)
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VECM_trend_results_full

# Run the VECM using the vars package

full_vecm_d <- ca.jo(

vecm.data.partd,

type = "eigen",

ecdet = "trend",

K = 2, # Set the lag order to 2

spec = "transitory"

)

summary(full_vecm_d)
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